[image:]
Helping plants grow
Activities: 2
Programming languages: MakeCode
Target age: 11-14 yrs, 14-16 yrs
Subjects & topics:
· Networks: Communication, IoT
· Computer systems: Input/output
· Design & technology: Electronics
· Global Goals: 15 Life on land
Design challenge summary
Two design challenge activities that could last for one or more extended sessions in a formal lesson, code club or maker space context.
In the Tree protector project, students use the radio on the BBC micro:bit to create a prototype sensor to send alerts when trees are being illegally cut down.
In the more advanced Auto-farmer project, students make moisture sensors and create a prototype of an automated farming system.
Overall key learning
· Learn how technology can help protect plant life for the benefit of the environment and growing food.
· Discover how wireless networks are used for practical purposes.
· Design, test and build physical working prototypes using programming and, optionally, with some simple electronics.
Additional skills
Design thinking, prototyping, iterative process
Activity 1: Tree protector
Use the micro:bit’s radio functionality to make prototype sensors to protect forests by sending alerts when trees are being illegally cut down. Learn about how in the real world, sensors are connected through gateways to the internet.
Key learning:
· Understand what the Global Goals are
· Understand what goal 15 is and its significance
· Understand the basics of IoT
· Produce an IoT ‘tree protector’ product to meet the success criteria
· Develop the product further with additional features
Activity 2: Auto-farmer
Use relays and home-made moisture sensors to make a prototype of an automated farming system that senses when crops are dry, saving water and increasing food production.
Key learning:
· Understand what the Global Goals are
· Understand what goal 15 is and its significance
· Understand the basics of transmitting data
· Produce a data node product to meet the success criteria
· Develop the product further with additional features

Curriculum links
England National Curriculum
KS3 computing curriculum
Curriculum aims:
· can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms and data representation
· can analyse problems in computational terms, and have repeated practical experience of writing computer programs in order to solve such problems
· can evaluate and apply information technology, including new or unfamiliar technologies, analytically to solve problems
Students should be taught to:
· design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems
· understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems
· undertake creative projects that involve selecting, using, and combining multiple applications, preferably across a range of devices, to achieve challenging goals, including collecting and analysing data and meeting the needs of known users
· create, reuse, revise and repurpose digital artefacts for a given audience, with attention to trustworthiness, design and usability
Read the full KS3 computing curriculum
KS3 DT curriculum
Design
· develop specifications to inform the design of innovative, functional, appealing products that respond to needs in a variety of situations

Evaluate
· investigate new and emerging technologies
· test, evaluate and refine their ideas and products against a specification, taking into account the views of intended users and other interested groups
· understand developments in design and technology, its impact on individuals, society and the environment, and the responsibilities of designers, engineers and technologists

Technical knowledge
· understand how more advanced electrical and electronic systems can be powered and used in their products (for example, circuits with heat, light, sound and movement as inputs and outputs)
· apply computing and use electronics to embed intelligence in products that respond to inputs (for example, sensors), and control outputs (for example, actuators), using programmable components (for example, microcontrollers)
Read the full KS3 DT curriculum
Northern Ireland Curriculum
Science and technology - technology and design - statutory requirements, KS3
· Design – identifying problems; investigating, generating, developing, modelling and evaluating design proposals; giving consideration to form, function and safety;
· Control – incorporate control systems, such as mechanical, electronic or computer-based, in products and understand how these can be employed to achieve desired effects
· Design cost effective and appropriate solutions to meet the specific needs of diverse local and global groups. Citizenship
· Identify product needs and pursue sustainable harmonious design solutions in a local outdoor/indoor context. Education for sustainable development
· research and manage information effectively to investigate design issues, using mathematics and ICT where appropriate;
· show deeper understanding by thinking critically and flexibly, solving problems and making informed decisions, using Mathematics and ICT where appropriate;
· demonstrate creativity and initiative when developing ideas and following them through;
· work effectively with others;
Read the full technology and design statutory requirements
Primary using ICT - desirable features - computational thinking and coding
Level 5
Pupils should:
· create more sophisticated coding projects using a broad range of commands and more than one platform; and
· solve a more complex problem using commands in a programming environment.
Programmable devices (such as Parrot Drone, MicroBit or Sphero)
· as a class look at and talk about examples of coding projects, including using multiple ‘if...then’ and ‘if...then...else’ commands, variables, sensors, events, operators and comparators;
· recognise how they can decompose these projects;
· in small groups, plan their own coding project, demonstrating a clear sense of purpose and audience, showing understanding of abstraction by deciding what details they need to include and what they can leave out, working out what different parts of the program must do and using logical reasoning to discuss and compare the commands that are required for their algorithm and predicting the outcome;
· use a range of commands to create a project, including variables, operators and control statements such as ‘if... then...’ alongside the use of ’if...then...else’ and comparators;
· test and debug at regular intervals and collaborate with others to solve problems as they arise;
Finally
· share their work (possibly using digital tools), respond to feedback, and comment on the work of others evaluating process and outcome; and
· organise files and publish work online (if available) so that others can view it.
Read all Primary using ICT desirable features

Scotland Curriculum for Excellence
Technologies
· I can identify the costs and benefits of using technologies to reduce the impact of our activities on the environment and business. (TCH 3-07a)
· I can present conclusions about the impact of technologies on the economy, politics and the environment. (TCH 4-07a)
· I can describe different fundamental information processes and how they communicate and can identify their use in solving different problems. (TCH 3-13a)
· I am developing my understanding of information and can use an information model to describe particular aspects of a real world system. (TCH 3-13b)
· I can explain the overall operation and architecture of a digitally created solution (TCH 4-14b)
Read the full Curriculum for Excellence: technologies.

Curriculum for Wales
Science and technology
Progression step 4 - computation is the foundation for our digital world:
· I can decompose given problems and select appropriate constructs to express solutions in a variety of environments.
· I can select and use data structures that efficiently manage data in algorithms.
· I can plan and implement test strategies to identify errors in programs.
· I can select and use multiple sensors and actuators that allow computer systems to interact with the world around them.
· I can explain how systems communicate, in order to design a network.
· I can explain the techniques used to store and transfer data and understand their vulnerabilities.
· I can identify, define and decompose problems, choose appropriate constructs and express solutions in a variety of environments.
· I can test, evaluate and improve a solution in software.
· I can design and create physical systems that use appropriate components and logic to complete tasks and achieve goals.
Read the full science and technology curriculum
Digital competence framework
Progression step 4 - data and computational thinking - problem-solving and modelling:
· I can create a simple model or self-contained algorithm.
· I can identify the different parts of an algorithm to determine their purpose.
· I can detect and correct errors in algorithms.
Progression step 5 - data and computational thinking - problem-solving and modelling:
· I can independently create and design models, and explain how they represent real-world problems, e.g. selecting and correctly using an appropriate method for illustrating a problem, such as a flowchart or spreadsheet.
· I can develop logical solutions to determine the input, outputs and processes of a program, e.g. following pseudocode or a flowchart to come to an outcome, developing a written sequence of steps that could be followed.
Read the digital competence framework

Code.org
CS Discoveries
Unit 1
Concepts included:
· problem solving
· inputs and outputs
· storing and processing information
Unit 4
Concepts included:
· social impact of computing
· understanding the needs of others when designing a solution
· team project
· testing and acting on feedback
· iteration
Unit 6
Concepts included:
· hardware
· sensors
· inputs and outputs
Read the full Code.org CS Discoveries curriculum
USA CSTA Standards
Grades 6-8
· 2-CS-02 - Design projects that combine hardware and software components to collect and exchange data.
· 2-AP-10 - Use flowcharts and/or pseudocode to address complex problems as algorithms.
· 2-AP-13 - Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.
· 2-AP-17 - Systematically test and refine programs using a range of test cases.
· 2-AP-18 - Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Read the CSTA Standards in full.

This content is published under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licence.
	Published by Micro:bit Educational Foundation https://microbit.org
	

my69u4i6prd0omojnmnd4va.png

