Make an AI sports data logger with micro:bit CreateAI that logs how much time you and others spend running, walking and being still.
Poradnik projektu krok po kroku
Krok 1: Zrozumieć to
How does it work?
In this project, you’ll train a machine learning (ML) model to recognise when you’re running, walking and being still.
You’ll combine that model with a MakeCode program that uses the micro:bit’s data logging function to record what action you are doing every second.
This project could be useful in sports such as football or netball where you need to analyse how active certain players are. You could also use it to monitor how much time you have spent running or walking during school breaks or a during a workout.
Czym jest uczenie maszynowe?
Uczenie maszynowe (ML) jest rodzajem sztucznej inteligencji (AI), w której bazując na danych komputery uczą się i podejmują decyzje.
Modele ML są trenowane przez ludzi, aby pomóc im w podejmowaniu takich decyzji, na przykład, aby rozpoznać różne "akcje", gdy poruszasz swój micro:bit na różne sposoby.
Co będę musiał zrobić?
Systemy AI potrzebują ludzi do projektowania, budowania, testowania i korzystania z nich. Zbierzesz dane, aby wytrenować model ML, przetestować go, ulepszyć i połączyć go z kodem komputerowym, aby stworzyć inteligentne urządzenie, które wykorzystuje AI. Aby to zrobić, użyjesz strony micro:bit i micro:bit CreateAI.
Krok 2: Utwórz
Czego potrzebujesz
- A micro:bit V2, USB cable, and a battery pack with 2 x AAA batteries
- A computer (e.g. desktop, laptop, or Chromebook) with access to the micro:bit CreateAI website, using a Chrome or Edge web browser
- Jeśli twój komputer nie ma włączonego Bluetooth, potrzebujesz dodatkowego micro:bita V2
- A strap and holder, or another way to attach the micro:bit to your wrist (e.g. flexible craft stems or elastic bands)
- You may also find our micro:bit CreateAI teaching tips useful
Zbierz próbki danych
When you open the project in micro:bit CreateAI, you’ll see we’ve given you some data samples for ‘running’, 'walking’ and ‘still’ actions:
walking
running
still
You can add your own movement samples using the micro:bit's movement sensor or accelerometer.
W micro:bit CreateAI, kliknij przycisk 'Połącz', aby połączyć zebrane dane, i postępuj zgodnie z instrukcjami.
Attach the data collection micro:bit to your left wrist like a watch, with the logo at the top. Click on the first action, ‘walking’, and click 'Record' to record your own data samples. Jeśli popełnisz błąd, możesz usunąć dowolne próbki, których nie chcesz. Możesz również nacisnąć przycisk B na micro:bicie, aby rozpocząć nagrywanie.
Jeśli chcesz nagrywać w sposób ciągły przez 10 sekund, aby otrzymać 10 próbek, kliknij trzy kropki obok przycisku nagrywania i wybierz tę opcję.
Now record your own data samples for the ‘running’ action, then the ‘still’ action, making sure for ‘still’ that you collect samples in different positions, such as facing up and down.
Trenuj i testuj model
Kliknij przycisk „Trenuj model”, aby trenować model, a następnie przetestować go. Try walking and see if ‘walking’ is the estimated action, then running to see if ‘running’ is the estimated action. Keep still and see if ‘still’ is estimated. Give your micro:bit to someone else to wear (making sure they put it on the same wrist and in the same orientation) and see if it works as well for them.
Ulepsz swój model
Większość modeli można ulepszyć dzięki większej liczbie danych. Jeśli model wymaga poprawy, kliknij „Edytuj próbki danych”.
You can delete any data samples which you think don’t fit or add more samples from yourself and other people.
Ponownie trenuj i testuj model.
Umieść model i kod na swoim micro:bicie
W micro:bit CreateAI kliknij "Edytuj w MakeCode", aby zobaczyć kod projektu w edytorze MakeCode.
Możesz zmodyfikować kod lub wypróbować go taki, jaki jest. Attach your micro:bit using a USB cable, click on the ‘Download’ button in the MakeCode screen, and follow the instructions to transfer your AI model and the code blocks to it.
Attach a battery pack to the micro:bit and put it on, ready to test out.
Collect your data
First press buttons A and B together to delete any old data logs from your micro:bit. Reset the timer by pressing the reset button on the back of the micro:bit. Press button A to start logging and button B to stop logging.
Your data will stay on your micro:bit even if you disconnect the battery or press the reset button.
Analizuj swoje dane
Odłącz pakiet baterii i podłącz micro:bit z powrotem do komputera. micro:bit pojawia się jako dysk USB o nazwie MICROBIT. Spójrz na dysk MICROBIT i otwórz plik MY_DATA, aby zobaczyć tabelę Twoich danych w przeglądarce internetowej:

The time stamps in the log represent the amount of time that has passed since your micro:bit was powered on or reset.
Click on Visual preview to see a graph of your data:

You can also click on the Copy button and then paste your data into a spreadsheet.
Jak działają bloki kodu
This program uses a variable called ‘logging’. A variable in a computer program is a container for storing data which can be accessed and updated while the program is running. In this program, the variable ‘logging’ controls if the micro:bit is logging or not and can be set to ‘true’ or ‘false’. Variables that can be set to these two values are called ‘Boolean’ variables.
When the program starts, the variable ‘logging’ is set to false. A show icon block is used to display a ‘no’ icon on the LED display to indicate the micro:bit is not logging. The set columns and set timestamp blocks create labels for the data logging table your micro:bit will produce.
The on button A pressed block is used to set logging to ‘true’ and show a ‘yes’ icon on the LED display. The on button B pressed block is used to set logging to ‘false’ and show a ‘no’ icon on the LED display. And the on buttons A + B pressed block sets logging to ‘false’, displays a skull icon, and deletes any log.
Finally, an ‘every’ block is used to check every 1,000 milliseconds or second if the micro:bit is logging. If it is, an ‘if then else’ block is used with ‘is ML detected’ and ‘log data’ blocks to record a 0 if you are still, a 1 if you are walking and a 2 if you are running in your data logging table. If the micro:bit cannot detect what you are doing, it records a -1 in the table. Bigger numbers are used for more active actions, so the resulting data logging graph gives you a clear visual record of how active you have been.
Ewaluacja
How accurate is the AI sports logger in tracking your movements? How could you improve its accuracy? Who would find this device particularly useful? How does it compare to the Step counter or the Movement data logger projects?
Krok 3: Rozszerzenie
- Add a fourth action such as ‘throwing’ for sports like netball or tennis.

Excel spreadsheet with formula to count certain activity cells
- Add up how much time you spent on each activity. You could do this saving your data as a CSV file, opening it in a spreadsheet and using a formula such as =COUNTIF(B2:B70,1) Where B2:B70 is the range of the activity cells, and 1 is the activity number meaning ‘walking’.
This content is published under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) licence.